15 November 2011 / by Radmila Gurkova

TED Talk-Justin Hall-Tipping: Freeing energy from the grid

httpv://youtu.be/rsuB-6-n-MM

Why can't we solve these problems? We know what they are. Something always seems to stop us. Why? I remember March the 15th, 2000. The B15 iceberg broke off the Ross Ice Shelf. In the newspaper it said "it was all part of a normal process." A little bit further on in the article it said "a loss that would normally take the ice shelf 50-100 years to replace." That same word, "normal," had two different, almost opposite meanings.

If we walk into the B15 iceberg when we leave here today, we're going to bump into something a thousand feet tall, 76 miles long, 17 miles wide, and it's going to weigh two gigatons. I'm sorry, there's nothing normal about this. And yet I think it's this perspective of us as humans to look at our world through the lens of normal is one of the forces that

stops us developing real solutions. Only 90 days after this, arguably the greatest discovery of the last century occurred. It was the sequencing for the first time of the human genome. This is the code that's in every single one of our 50 trillion cells that makes us who we are and what we are. And if we just take one cell's worth of this code and unwind it, it's a meter long, two nanometers thick. Two nanometers is 20 atoms in thickness.

And I wondered, what if the answer to some of our biggest problems could be found in the smallest of places, where the difference between what is valuable and what is worthless is merely the addition or subtraction of a few atoms? And what if we could get exquisite control over the essence of energy, the electron? So I started to go around the world finding the best and brightest scientists I could at universities whose collective discoveries have the chance to take us there, and we formed a company to build on their extraordinary ideas.

Six and a half years later, a hundred and eighty researchers, they have some amazing developments in the lab, and I will show you three of those today, such that we can stop burning up our planet and instead, we can generate all the energy we need right where we are, cleanly, safely, and cheaply. Think of the space that we spend most of our time. A tremendous amount of energy is coming at us from the sun. We like the light that comes into the room, but in the middle of summer, all that heat is coming into the room that we're trying to keep cool. In winter, exactly the opposite is happening. We're trying to heat up the space that we're in, and all that is trying to get out through the window.

Wouldn't it be really great if the window could flick back the heat into the room if we needed it or flick it away before it came in? One of the materials that can do this is a remarkable material, carbon, that has changed its form in this incredibly beautiful reaction where graphite is blasted by a vapor, and when the vaporized carbon condenses, it condenses back into a different form: chickenwire rolled up. But this chickenwire carbon, called a carbon nanotube, is a hundred thousand times smaller than the width of one of your hairs. It's a thousand times more conductive than copper. How is that possible? One of the things about working at the nanoscale is things look and act very differently. You think of carbon as black. Carbon at the nanoscale is actually transparent and flexible. And when it's in this form, if I combine it with a polymer and affix it to your window when it's in its colored state, it will reflect away all heat and light, and when it's in its bleached state it will let all the light and heat through and any combination in between. To change its state, by the way, takes two volts from a millisecond pulse. And once you've changed its state, it stays there until you change its state again.

As we were working on this incredible discovery at University of Florida, we were told to go down the corridor to visit another scientist, and he was working on a pretty incredible thing. Imagine if we didn't have to rely on artificial lighting to get around at night. We'd have to see at night, right? This lets you do it. It's a nanomaterial, two nanomaterials, a detector and an imager. The total width of it is 600 times smaller than the width of a decimal place. And it takes all the infrared available at night, converts it into an electron in the space of two small films, and is enabling you to play an image which you can see through. I'm going to show to TEDsters, the first time, this operating. Firstly I'm going to show you the transparency. Transparency is key. It's a film that you can look through. And then I'm going to turn the lights out. And you can see, off a tiny film, incredible clarity.

As we were working on this, it dawned on us: this is taking infrared radiation, wavelengths, and converting it into electrons. What if we combined it with this? Suddenly you've converted energy into an electron on a plastic surface that you can stick on your window. But because it's flexible, it can be on any surface whatsoever. The power plant of tomorrow is no power plant. We talked about generating and using. We want to talk about storing energy, and unfortunately the best thing we've got going is something that was developed in France a hundred and fifty years ago, the lead acid battery. In terms of dollars per what's stored, it's simply the best.

Knowing that we're not going to put fifty of these in our basements to store our power, we went to a group at University of Texas at Dallas, and we gave them this diagram. It was in actually a diner outside of Dallas/Fort Worth Airport. We said, "Could you build this?" And these scientists, instead of laughing at us, said, "Yeah." And what they built was eBox. EBox is testing new nanomaterials to park an electron on the outside, hold it until you need it, and then be able to release it and pass it off. Being able to do that means that I can generate energy cleanly, efficiently and cheaply right where I am. It's my energy. And if I don't need it, I can convert it back up on the window to energy, light, and beam it, line of site, to your place. And for that I do not need an electric grid between us.

The grid of tomorrow is no grid, and energy, clean efficient energy, will one day be free. If you do this, you get the last puzzle piece, which is water. Each of us, every day, need just eight glasses of this, because we're human. When we run out of water, as we are in some parts of the world and soon to be in other parts of the world, we're going to have to get this from the sea, and that's going to require us to build desalination plants. 19 trillion dollars is what we're going to have to spend. These also require tremendous amounts of energy. In fact, it's going to require twice the world's supply of oil to run the pumps to generate the water. We're simply not going to do that. But in a world where energy is freed and transmittable easily and cheaply, we can take any water wherever we are and turn it into whatever we need.

I'm glad to be working with incredibly brilliant and kind scientists, no kinder than many of the people in the world, but they have a magic look at the world. And I'm glad to see their discoveries coming out of the lab and into the world. It's been a long time in coming for me. 18 years ago, I saw a photograph in the paper. It was taken by Kevin Carter who went to the Sudan to document their famine there. I've carried this photograph with me every day since then. It's a picture of a little girl dying of thirst. By any standard this is wrong. It's just wrong. We can do better than this. We should do better than this.

And whenever I go round to somebody who says, "You know what, you're working on something that's too difficult. It'll never happen. You don't have enough money. You don't have enough time. There's something much more interesting around the corner," I say, "Try saying that to her." That's what I say in my mind. And I just say "thank you," and I go on to the next one. This is why we have to solve our problems, and I know the answer as to how is to be able to get exquisite control over a building block of nature, the stuff of life: the simple electron.

Thank you.

(Applause)

04

February 2012
I wish to....... What do you wish to do?
by Radmila Gurkova
I wish to complain….. ‘I wish to’ can mean the same as ‘I want to’ but it is really formal and not very common. However the word ‘wish’ can vary in definition. Wish as a noun means ‘offer good wishes’ I wish you the best with your new job. We wish you a merry Christmas Wish can also b...

04

February 2012
anymore..... What don't you do anymore?
by Radmila Gurkova
Anymore: any longer, nowadays Example: Harry doesn’t travel anymore. Anymore is properly used in a statement about a change in a previous condition or activity. It is often spelled as a two words, any more, but most authorities accept it as a...

04

February 2012
Sorry for or sorry about?
by Radmila Gurkova
Sorry for or sorry about? Do you know when to use the correct one? Sorry for expresses pity, remorse I feel sorry for her I’m sorry for your loss Sorry about expresses regret and disappointment He is sorry for arriving late to class She is sorry about destr...

03

February 2012
A Doodle for Google
by Radmila Gurkova
httpv://www.youtube.com/watch?v=MhVp9gcxLJY Google Doodles are the google logo made into fun images to celebrate anniversaries, lives of famous people like pioneers, scientists or artists, and special events taking place around the world. The google doodle began in 1998 when the co-founders of google placed a stick-man on their logo to indi...

03

February 2012
Twittering with feathered friends
by Radmila Gurkova
httpv://www.youtube.com/watch?v=npjOSLCR2hE Are you a “Bird Watcher” Do you know many people who are? The RSPB (Royal Society for the Protection of Birds) say that this year there has been a decline in wild birds in the garden. The RSPB say that this time of year food is scarce leading to a possibility that wild birds...

03

February 2012
Friday Fun: The History of English #5
by Radmila Gurkova
httpv://www.youtube.com/watch?v=YVDmFVx8O_A&feature=youtu.be The history of the English language posts continue with this video that covers the impact of science on the development of the English language. Are there any words mentioned in the video that you use in your work? Do you know how much of English comes from Latin? ...

27

January 2012
Your Textbook on the iPad – no way!!
by Radmila Gurkova
Apple re-invents the way you can read your textbook, make electronic notes on the text page, highlight images and basically learn - in a more interactive, modern way.  No more looking through old textbooks or wondering in amazement if you have the latest one only the week after you have purchased it. Apple yet again sets the boundaries in ins...

27

January 2012
Become...
by Radmila Gurkova
When do we use become? Example:  I became interested in teaching when I came to barcelona ...

27

January 2012
Get...
by Radmila Gurkova
I got interested in teaching 5 ye...

27

January 2012
Few, a Few.....
by Radmila Gurkova
FEW - a small number of Can I ask y...